
BREYDON’s

turntab

turner of tablet

Version: 0.4.2 extremely α

October, 2020

—

K.F. Breydon

www.breydon.id.au

Table of Contents

1 Acknowledgement of Country
2 Overview

2.1 Cataloguing
2.2 What is turntab?
2.3 Features

3 Follow command line instructions
4 Figure things out

4.1 Suss out orientation of graphical display
4.2 Find all the forms of tablet input
4.3 Suss out orientation of tablet input

5 Change things
5.1 Translate terminology
5.2 Increment rotation goals
5.3 Orient graphical display
5.4 Orient tablet input
5.5 Orient frame-buffer consoles

6 Supply information without accompanying action
6.1 Offer help
6.2 Cite origins

7 Finish

turntab v 0.4.2 extremely α 1

1 Acknowledgement of Country

Acknowledgement of Country [1] ≡
{turntab has been written on Boon Wurrung land.

I pay my respects to the Boon Wurrung people,

especially their Elders, and to all Indigineous

communities within whose lands, waters or skies

this software is read, adapted or run.

\342\237\244\342\237\245

}
This macro is invoked in definition 22.

\342\237\244 and \342\237\245 are C octal escaped UTF-8 representations of modal operator symbols
“was always” and “will always be” — used here in allusion to the phrase Always was and always will be
Aboriginal land.

2 v 0.4.2 extremely α turntab

2 Overview

2.1 Cataloguing

Reference, in the script, to version number, update dates and so on draws on the following few macros.
These macros haven’t been connected to their TEX equivalents — I still edit footline and coverpage mentions
separately.

Version[2]M ≡
{v0.4.2 extremely alpha}

This macro is invoked in definitions 9 and 22.

Dates[3]M ≡
{Written October 2020.

}
This macro is invoked in definition 22.

Credits[4]M ≡
{Author: Kermie BREYDON (they/them/their).

}
This macro is invoked in definition 22.

URL for turntab[5]M ≡
{https://www.breydon.id.au/puting/turntab/}

This macro is invoked in definitions 9 and 22.

Should this web address fall out of date, kindly change it to a freely available record held by a public library
or similar. (If nowhere has turntab these days, consider donating this copy you are reading). Thanks :)

Copyright status[6]M ≡
{This software is in the public domain. It is

free for use by anyone and for any purpose. The

software is offered "as is", without warranty of

any kind.

}
This macro is invoked in definitions 7 and 22.

Gonna pop that last passage into in a file named COPYING, for those folks relying on automated searches for
one.

COPYING[7] ≡
{Copyright status[6]
}

This macro is attached to an output file.

I’d rather COPYING consist of a Creative Commons CC0 statement, but for a regrettable dependence of that
notice on “he or she” phrasing (as of CC0 1.0).1 Alternative standardised statements that boil down to
the above — public domain dedication, fallback licence, warrantilessness — don’t seem to be worth their
disadvantages. I think I might have borrowed the “free for use by anyone and for any purpose” phrasing
from the SQLite website.2 While I intend that middle statement as a fallback licence, I may too be open to
issuing individual licences, for umpteen dollary-doos, in special cases.

1 http://creativecommons.org/publicdomain/zero/1.0/
2 https://www.sqlite.org

turntab v 0.4.2 extremely α 3

2.2 What is turntab?

README[8] ≡
{turntab is a programme,

which is in these files:

README describes the files.

turntab.sh is the file that computers use to run turntab.

turntab.pdf is a book for people to read turntab.

COPYING says that turntab belongs to everybody.

turntab.tex is for putting turntab into other publications.

turntab.fw is what the files are made out of.

}
This macro is attached to an output file.

Introduce self [9] ≡
{#!/usr/bin/env sh

turntab Version[2]
written by Kermie BREYDON

on Boon Wurrung country

in 2020

for the public domain

#

URL for turntab[5]

printf "Hello, turntab speaking. I get the orientations

of tablet input and display to match each other.\n"

}
This macro is invoked in definition 10.

If you’ll excuse a few paragraphs’ jargon, turntab is a work of literate programming. Its executable com-
ponent — turntab.sh — is a script designed to be run by posixy shells, either at the command-line or
when triggered by a shortcut. The documentation (which you are reading now) and the script are both
derived from the same source file — turntab.fw — which follows the formatting conventions of the Fun-
nelWeb macro preprocessor3 (but eschews FunnelWeb’s extremely 1990s html dialect for a slightly heavier
investment in the TEX typesetting system4 than is quite standard for FunnelWeb).

I wrote turntab as an accessibility aid to using the X Window System5 on a touchscreen device. turntab’s
script probes and very slightly manipulates xsetwacom (a utility for the wacom input driver for X)6 and
xrandr (an interface for the RandR extension to X), to align their respective rotation settings. Perhaps
most distinctively, turntab also co-ordinates the system console and virtual TTYs with that graphical
stuff. turntab presumes an interface for this last part at /sys/class/graphics/fbcon/rotate all; some
systems might require a different approach, or lack the capacity. Note that the method given here for

3 http://www.ross.net/funnelweb/
4 https://tug.org/
5 http://www.x.org/
6 http://linuxwacom.sourceforge.net

4 v 0.4.2 extremely α turntab

adjusting frame-buffered consoles depends on superuser privileges — so do take appropriate precaution if
you are out to exploit this particular function.

At version 0.4.2 extremely α, turntab is likely to behave over-exuberantly in systems that involve multiple
displays and/or multiple wacom-compatible tablet surfaces. I expect it could adjust more of them than nec-
essary, and in some cases take the wrong readings. It is also likely to mess up around some custom RandR
efforts to compensate for projector distortion, and so on. But in a standalone unit — for communica-
tion boards or basic tablet computing — I find it effective, versatile, and uncommonly simple to implement.
May you benefit from this work, in some way, too.

2.3 Features

turntab.sh can perform the following tasks. Their definition numbers are indicated in square brackets, for
ease of cross-reference.

turntab.sh[10] ≡
{Introduce self [9]
Have functions[11]
Follow command line instructions[12]
Finish[23]
}

This macro is attached to an output file.

“Have functions”? No, it’s not throwing a party; it is being ready to do a range of things in various sequences.
These things:

Have functions[11] ≡
{# Functions!

Cite origins[22]
Offer help[21]
Translate terminology [16]
Increment rotation goals[17]
Suss out orientation of graphical display [13]
Find all the forms of tablet input[14]
Suss out orientation of tablet input[15]
Orient graphical display [18]
Orient tablet input[19]
Orient frame-buffer consoles[20]}

This macro is invoked in definition 10.

turntab v 0.4.2 extremely α 5

3 Follow command line instructions
turntab commands aim to suit a few demographics, with contrasting needs.

People using stenography, text-to-speech or (some) predictive-text utilities will typically find it easiest to
issue a command in ordinary words — like turntab help. The word “turntab” will of course still need to
be added to lexicon of the appropriate software. Fuller support of text-to-speech users might require an
interactive mode, something turntab 0.4.2 extremely α lacks.

Serial typists (entering one letter at a time), are sometimes better served by a concise command without
punctuation — like turntab h. This group might like copies of turntab.sh reassigned to a shorter name;
but I’ll leave that step to you.

Sticklers for tradition go in for symbols. One or two hyphens and a full word — as in turntab --help —
facillitates the writing of intelligible scripts. One hyphen and initial(s) offers consistency on a wider range
of operating systems (and for some users is easier to input) — as with turntab -h.

Obviously the approach outlined below is very English Language, but it’s easy to bung in additional terms.
Certain phrases might clash with instances of shorthands like *cw, necessitating replacement with --cw|cw|-

cw patterns (in the macros Following command line instructions and Translate terminology).

Follow command line instructions[12] ≡
{# Making sense of commands!

case "$1" in

""|*help|h|-h)

printf "\nThings you can write after $0:\n"

help

;;

*version|v|-v)

software

;;

*increment|*cycle|c|-c)

sussxoutputori

incrementgoals

orientxoutput

orientxinput

orientfbc

;;

*input|i|-i)

sussxoutputori

orientxinput

orientfbc

;;

*output|o|-o)

sussxinputori

orientxoutput

orientfbc

;;

*0|*1|*2|*3|*normal|*right|*inverted|*left|*none|*cw|*half|*ccw)

goal="$1"

translate

orientxoutput

orientxinput

orientfbc

;;

6 v 0.4.2 extremely α turntab

*x)

case "$2" in

*increment|*cycle|c|-c)

sussxoutputori

incrementgoals

orientxoutput

orientxinput

;;

""|*input|i|-i)

sussxoutputori

orientxinput

;;

*output|o|-o)

sussxinputori

orientxoutput

;;

*0|*1|*2|*3|*normal|*right|*inverted|*left|*none|*cw|*half|*ccw)

goal="$2"

translate

orientxoutput

orientxinput

;;

*)

printf "Sorry, do what?"

;;

esac

;;

*)

printf "

Sorry, I do not know what you mean by $1.

Here are some other things we could try next:\n"

help

;;

esac

}
This macro is invoked in definition 10.

There have got to be more efficient ways of allowing X-only behaviour. We could check for an x on beginning
an orientfbc step — skipping the rest of the step should there be an x. Problem is, I don’t know how to
neatly ask a shell script to follow the same procedure regardless of whether a command-line option is tacked
on in the 1st or 2nd position. Shame. Maybe one day.

turntab v 0.4.2 extremely α 7

4 Figure things out

4.1 Suss out orientation of graphical display

Often, our reference will be the orientation of the main graphical display.

xrandr doesn’t seem to allow us to ask after a datum directly. Present orientation is left out of the default
query response, and I haven’t managed to get xrandr to report in detail on fewer than ALLLL OF THE
SCREENS at once. With some regret, let us wade into xrandr --verbose.

The resulting output does not appear cleanly delineated. (Although maybe it uses some kind of invisible
record-separator?) Furthermore, identifying features are inconsistent; there’s not always a “primary” marker
on the entry we want, for example.

Have a squiz at this first five lines of a (pretend) xrandr --verbose result:

Screen 0: minimum 8 x 8, current 600 x 400, maximum 12345 x 12345

LVDS1 connected primary 600x400+0+0 (0x2c) normal (normal left inverted right x axis y axis) 120mm x 800mm

Identifier: 0x57

Timestamp: 54321543

Subpixel: horizontal rgb

We could take a stab that the first non-“Screen” line is practically always the one for us.

We could try something like |grep "Screen" -v -m 1, saying invert match (thereby skip lines announcing
“Screen 0” etc) and return only the first result. Left clutching just the first line of the first monitor’s data
and the vain hope that a whole bunch of things do stay consistent, we might go to something like |awk -F

" " "{print $6 }" or “show us the 6th word of the remaining line”.

But if we’re gonna be so sketchy anyway, we might as well straight-up lie to awk, for improved accuracy and
less piping.

In any case, we should see if we got a plausible-sounding result, and if not, bow out.

Suss out orientation of graphical display [13] ≡
{sussxoutputori () {

printf "\nSussing out display (via xrandr)...\n"

xoutputori="$(xrandr --verbose | awk -e ’BEGIN {RS ="\\(normal left inverted"} $0 ~

"Screen" {print $NF}’)"

if test "$xoutputori" = "normal" -o "$xoutputori" = "left" -o "$xoutputori" =

"inverted" -o "$xoutputori" = "right"; then

goal="$xoutputori"

translate

printf "OK. I reckon the display is $orientation.\n"

else

printf "

Sorry, but this time I could not tell which way

the graphical display has been turned.

(Assuming that there even is one?)

Please note that I depend on the X Window System

for graphical matters and am not very clever.\n"

exit

fi

}

}
This macro is invoked in definition 11.

8 v 0.4.2 extremely α turntab

4.2 Find all the forms of tablet input

In practice, xsetwacom treats each type of tablet input, or “device”, separately — despite the driver’s manual
claiming that changing one input device’s orientation will change them all. One implication of this is that
we must identify every form of contact that we wish to reorient. Another implication is that reading the
orientation of one device at random does not guarantee the orientation of whatever device(s) the user has
observed. For instance, they might be exclusively using the eraser end of a stylus, whereas we might happen
to base our assumptions on the “device” for generic touches.

We should be able to automate the referencing of a complete set of Wacom devices, in a single line, surely?
xsetwacom list |sed -E ’s/.*id: //; s/\t.*//’ returns ID numbers that xsetwacom will be happy
with.

Find all the forms of tablet input[14] ≡
{findtab () {

printf "\nIdentifying forms of tablet input (via xsetwacom)...\n"

devices="$(xsetwacom list | sed -E ’s/.*id: //; s/\t.*//’)"

}

}
This macro is invoked in definition 11.

4.3 Suss out orientation of tablet input

Suss out orientation of tablet input[15] ≡
{sussxinputori () {

findtab

printf "\nSussing out tablet orientation (via xsetwacom)...\n"

for device in $devices; do

xinputori="$(xsetwacom get $device rotate)"

break

done

if test "$xinputori" = "none" -o "$xinputori" = "ccw" -o "$xinputori" = "half" -o

"$xinputori" = "cw"; then

goal="$xinputori"

translate

printf "OK. I reckon the tablet input is $orientation.\n"

else

printf "

Sorry, but this time I could not tell which way

any tablet input is oriented.

Please note that the only tablets I handle are

Wacom hardware in use by the X Window System.\n"

exit

fi

}

}
This macro is invoked in definition 11.

Evidently, we are risking the surprise reading outcome (by only examining one $device’s orientation).

turntab v 0.4.2 extremely α 9

5 Change things

5.1 Translate terminology

In order to match orientations, we connect a piece of xrandr, xsetwacom or fbcon terminology with its
equivalents. While we are at it, let’s express the terms’ shared meaning more clearly.

Translate terminology [16] ≡
{translate () {

case "$goal" in

*normal|*none|*0)

xoutputori="normal";

xinputori="none";

fbcori="0";

orientation="upright (not rotated)";;

*left|*ccw|*3)

xoutputori="left";

xinputori="ccw";

fbcori="3";

orientation="turned on its left";;

*inverted|*half|*2)

xoutputori="inverted";

xinputori="half";

fbcori="2";

orientation="upside-down to usual";;

*right|*cw|*1)

xoutputori="right";

xinputori="cw";

fbcori="1";

orientation="turned on its right";;

esac

}

}
This macro is invoked in definition 11.

5.2 Increment rotation goals

For cycling through orientations, we reassign those meanings.

Increment rotation goals[17] ≡
{incrementgoals () {

case "$goal" in

normal|none|0)

xoutputori="right";

xinputori="cw";

fbcori="1";

orientation="turned on its right";;

right|cw|1)

xoutputori="inverted";

xinputori="half";

fbcori="2";

orientation="upside-down to usual";;

10 v 0.4.2 extremely α turntab

inverted|half|2)

xoutputori="left";

xinputori="ccw";

fbcori="3";

orientation="turned on its left";;

left|ccw|3)

xoutputori="normal";

xinputori="none";

fbcori="0";

orientation="upright (not rotated)";;

esac

printf "\nLet’s make it $orientation.\n"

}

}
This macro is invoked in definition 11.

5.3 Orient graphical display

Orient graphical display [18] ≡
{orientxoutput () {

printf "

Trying to orient graphical display (via xrandr)...\n"

xrandr -o $xoutputori

if test "$(xrandr --verbose | awk -e ’BEGIN {RS ="\\(normal left inverted"} $0 ~

"Screen" {print $NF}’)" = "$xoutputori"; then

printf "Seems OK, from my perspective.\n"

else

printf "Sorry, I could not correct the graphical display.\n"

fi

}

}
This macro is invoked in definition 11.

This manner of testing does not strike me as terribly efficient.

5.4 Orient tablet input

Of course, xsetwacom set $device rotate $xinputori is a task that need only be done once per $device.
So, at a glance, enclosing it in a for device in $devices; loop which is itself inside another for device

in $devices loop might appear redundant.

The outer loop we don’t actually care to repeat. The main point is to see if we seem to be handing xsetwacom

back the right sort of datum: a likely-sounding id number. As a programme inclined to loose assumption,
turntab figures that this’ll do, this vague spot check.

However, with the knowledge that we cannot necessarily rely on xsetwacom to sort the rest out for us, we
do need to be prepared to repeat the inner loop should there be more than one id-number in $devices.

Orient tablet input[19] ≡
{orientxinput () {

findtab

if test "$devices" = ""; then

printf "Sorry, I can’t find any.

turntab v 0.4.2 extremely α 11

Please note that I can only do so within the

X Window System and for certain Wacom devices.\n"

else

for device in $devices; do

if test "$device" -gt 0 -a "$device" -lt 100; then

printf "Trying to correct tablet orientation (via xsetwacom)...\n"

for device in $devices; do

xsetwacom set $device rotate $xinputori

done

printf "Done. Hopefully.\n"

else

printf "Sorry, this time, I cannot make sense of

the system’s response.\n"

fi

break

done

fi

}

}
This macro is invoked in definition 11.

5.5 Orient frame-buffer consoles

When successful, the command echo $fbcori |sudo tee /sys/class/graphics/fbcon/rotate all spits
out the value of $fbcori. By catching that output in $fbcresult, we stop a decontextualised number from
popping out onto the user interface. If we don’t catch a number, we can be confident of failure. Nice.

Orient frame-buffer consoles[20] ≡
{orientfbc () {

printf "

About to orient the text consoles that use a

frame-buffer. This requires special permission,

so you might be asked for a password...\n"

fbcresult="$(echo $fbcori | sudo tee /sys/class/graphics/fbcon/rotate_all)"

if test "$fbcresult" = "$fbcori"; then

printf "OK. I think that worked.\n"

else

printf "\nSorry, I could not correct them.\n"

fi

}

}
This macro is invoked in definition 11.

12 v 0.4.2 extremely α turntab

6 Supply information without accompanying action

6.1 Offer help

Offer help[21] ≡
{help () {

printf "

help Shows this usage list.

version Shows the current software version.

input Makes the tablet input and the

teletype-style consoles that use a

frame-buffer (FBTTYs) match the

graphical display’s orientation.

output Orients the graphical display and

FBTTYs to match the tablet input.

increment Corrects tablet input and FBTTYs to

match the graphical display, then

turns them all 90 degrees clockwise.

[o] Sets all frame-buffer consoles,

graphical display and tablet input

to the [o] orientation.

x Affects only the graphical display

and tablet input.

Options for [o] include 0, 1, 2, or 3

but also terms such as left or ccw.

For instance: turntab x right\n"

}

}
This macro is invoked in definition 11.

I am yet to encounter unambiguous language around the subject of text interfaces for operating systems
that holds up after, say, 1960-something. Even “graphical display” is horribly imprecise. I’m sorry for any
confusion.

6.2 Cite origins

Cite origins[22] ≡
{software () {

printf ’

This is turntab Version[2].
<URL for turntab[5]>
Dates[3]Credits[4]
Copyright status[6]
Acknowledgement of Country [1]’
}

}
This macro is invoked in definition 11.

turntab v 0.4.2 extremely α 13

7 Finish

Finish[23] ≡
{# Humphrey, we’re leaving!

exit $?}
This macro is invoked in definition 10.

Tada, the end... Actually, there is endless room for improvement. Thanks for reading!

Catch you round like
all the way you’ve come
after four turntab increments,

Kermie F. Breydon
Boon Wurrung Country, 7 October 2020

14 v 0.4.2 extremely α turntab

